Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice.

نویسندگان

  • Kanako Bessho-Uehara
  • Diane R Wang
  • Tomoyuki Furuta
  • Anzu Minami
  • Keisuke Nagai
  • Rico Gamuyao
  • Kenji Asano
  • Rosalyn B Angeles-Shim
  • Yoshihiro Shimizu
  • Madoka Ayano
  • Norio Komeda
  • Kazuyuki Doi
  • Kotaro Miura
  • Yosuke Toda
  • Toshinori Kinoshita
  • Satohiro Okuda
  • Tetsuya Higashiyama
  • Mika Nomoto
  • Yasuomi Tada
  • Hidefumi Shinohara
  • Yoshikatsu Matsubayashi
  • Anthony Greenberg
  • Jianzhong Wu
  • Hideshi Yasui
  • Atsushi Yoshimura
  • Hitoshi Mori
  • Susan R McCouch
  • Motoyuki Ashikari
چکیده

Domestication of crops based on artificial selection has contributed numerous beneficial traits for agriculture. Wild characteristics such as red pericarp and seed shattering were lost in both Asian (Oryza sativa) and African (Oryza glaberrima) cultivated rice species as a result of human selection on common genes. Awnedness, in contrast, is a trait that has been lost in both cultivated species due to selection on different sets of genes. In a previous report, we revealed that at least three loci regulate awn development in rice; however, the molecular mechanism underlying awnlessness remains unknown. Here we isolate and characterize a previously unidentified EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family member named REGULATOR OF AWN ELONGATION 2 (RAE2) and identify one of its requisite processing enzymes, SUBTILISIN-LIKE PROTEASE 1 (SLP1). The RAE2 precursor is specifically cleaved by SLP1 in the rice spikelet, where the mature RAE2 peptide subsequently induces awn elongation. Analysis of RAE2 sequence diversity identified a highly variable GC-rich region harboring multiple independent mutations underlying protein-length variation that disrupt the function of the RAE2 protein and condition the awnless phenotype in Asian rice. Cultivated African rice, on the other hand, retained the functional RAE2 allele despite its awnless phenotype. Our findings illuminate the molecular function of RAE2 in awn development and shed light on the independent domestication histories of Asian and African cultivated rice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergent Loss of Awn in Two Cultivated Rice Species Oryza sativa and Oryza glaberrima Is Caused by Mutations in Different Loci

A long awn is one of the distinct morphological features of wild rice species. This organ is thought to aid in seed dispersal and prevent predation by animals. Most cultivated varieties of Oryza sativa and Oryza glaberrima, however, have lost the ability to form long awns. The causal genetic factors responsible for the loss of awn in these two rice species remain largely unknown. Here, we evalu...

متن کامل

Sequence polymorphisms in wild, weedy, and cultivated rice suggest seed-shattering locus sh4 played a minor role in Asian rice domestication

The predominant view regarding Asian rice domestication is that the initial origin of nonshattering involved a single gene of large effect, specifically, the sh4 locus via the evolutionary replacement of a dominant allele for shattering with a recessive allele for reduced shattering. Data have accumulated to challenge this hypothesis. Specifically, a few studies have reported occasional seed-sh...

متن کامل

Evaluation of Tolerance to Drought Stress in Rice Genotypes (Oryza sativa L.) from Central and West Asian Countries

To identify genotypes tolerant to drought stress in rice germplasm, a factorial pot experiment was carried out in the form of a completely randomized design with three replications and 70 rice genotypes originating from Central and West Asian countries in non-stress and drought-stress conditions at the Rice Research Institute of Iran, Rasht, north of Iran, in 2019. Based on the results of this ...

متن کامل

Seeing red: the origin of grain pigmentation in US weedy rice.

Weedy forms of crop species infest agricultural fields worldwide and are a leading cause of crop losses, yet little is known about how these weeds evolve. Red rice (Oryza sativa), a major weed of cultivated rice fields in the US, is recognized by the dark-pigmented grain that gives it its common name. Studies using neutral molecular markers have indicated a close relationship between US red ric...

متن کامل

Broadening Gene Pool of Rice for Resistance to Biotic Stresses Through Wide Hybridization

Variability in the cultivated germplasm for economic traits such as resistance to rice tungro virus, sheathblight, yellow stem borer, drought and salt tolerance is limited. This necessitated search for the genes in secondary and tertiary gene pool of genus Oryza. Fortunately, wild species are an important reservoir ofuseful genes for resistance to major disease, pest and tolerance t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 32  شماره 

صفحات  -

تاریخ انتشار 2016